Python-01-快速入门

Python 教程

1. 简介

1.1 Python与其他语言的区别

​ Python是一种计算机程序设计语言。你可能已经听说过很多种流行的编程语言,比如非常难学的C语言,非常流行的Java语言,适合初学者的Basic语言,适合网页编程的JavaScript语言等等。

​ 那Python是一种什么语言?

​ 首先,我们普及一下编程语言的基础知识。用任何编程语言来开发程序,都是为了让计算机干活,比如下载一个MP3,编写一个文档等等,而计算机干活的CPU只认识机器指令,所以,尽管不同的编程语言差异极大,最后都得“翻译”成CPU可以执行的机器指令。而不同的编程语言,干同一个活,编写的代码量,差距也很大。

​ 比如,完成同一个任务,C语言要写1000行代码,Java只需要写100行,而Python可能只要20行。

​ 所以Python是一种相当高级的语言。

​ 代码少还不好?代码少的代价是运行速度慢,C程序运行1秒钟,Java程序可能需要2秒,而Python程序可能就需要10秒。

​ 那是不是越低级的程序越难学,越高级的程序越简单?表面上来说,是的,但是,在非常高的抽象计算中,高级的Python程序设计也是非常难学的,所以,高级程序语言不等于简单。

​ 用Python可以做什么?可以做日常任务,比如自动备份你的MP3;可以做网站,很多著名的网站包括YouTube就是Python写的;可以做网络游戏的后台,很多在线游戏的后台都是Python开发的。总之就是能干很多很多事啦。

​ Python是著名的“龟叔”Guido van Rossum在1989年圣诞节期间,为了打发无聊的圣诞节而编写的一个编程语言。

​ 现在,全世界差不多有600多种编程语言,但流行的编程语言也就那么20来种。如果你听说过TIOBE排行榜,你就能知道编程语言的大致流行程度。这是最近10年最常用的10种编程语言的变化图:

​ Python就为我们提供了非常完善的基础代码库,覆盖了网络、文件、GUI、数据库、文本等大量内容,被形象地称作“内置电池(batteries included)”。用Python开发,许多功能不必从零编写,直接使用现成的即可。

​ 除了内置的库外,Python还有大量的第三方库,也就是别人开发的,供你直接使用的东西。当然,如果你开发的代码通过很好的封装,也可以作为第三方库给别人使用。

​ 许多大型网站就是用Python开发的,例如YouTube、Instagram,还有国内的豆瓣。很多大公司,包括Google、Yahoo等,甚至NASA(美国航空航天局)都大量地使用Python。

​ 龟叔给Python的定位是“优雅”、“明确”、“简单”,所以Python程序看上去总是简单易懂,初学者学Python,不但入门容易,而且将来深入下去,可以编写那些非常非常复杂的程序。

​ 总的来说,Python的哲学就是简单优雅,尽量写容易看明白的代码,尽量写少的代码。如果一个资深程序员向你炫耀他写的晦涩难懂、动不动就几万行的代码,你可以尽情地嘲笑他。

2. 安装Python

​ 因为Python是跨平台的,它可以运行在Windows、Mac和各种Linux/Unix系统上。在Windows上写Python程序,放到Linux上也是能够运行的。

​ 要开始学习Python编程,首先就得把Python安装到你的电脑里。安装后,你会得到Python解释器(就是负责运行Python程序的),一个命令行交互环境,还有一个简单的集成开发环境。

在Windows上安装Python

首先,根据你的Windows版本(64位还是32位)从Python的官方网站下载Python 3.8对应的64位安装程序32位安装程序,然后,运行下载的exe安装包:

特别要注意勾上Add Python 3.8 to PATH,然后点“Install Now”即可完成安装。

3. Python解释器分类

当我们编写Python代码时,我们得到的是一个包含Python代码的以.py为扩展名的文本文件。要运行代码,就需要Python解释器去执行.py文件。

由于整个Python语言从规范到解释器都是开源的,所以理论上,只要水平够高,任何人都可以编写Python解释器来执行Python代码(当然难度很大)。事实上,确实存在多种Python解释器。

CPython

当我们从Python官方网站下载并安装好Python 3.x后,我们就直接获得了一个官方版本的解释器:CPython。这个解释器是用C语言开发的,所以叫CPython。在命令行下运行python就是启动CPython解释器。

CPython是使用最广的Python解释器。教程的所有代码也都在CPython下执行。

IPython

IPython是基于CPython之上的一个交互式解释器,也就是说,IPython只是在交互方式上有所增强,但是执行Python代码的功能和CPython是完全一样的。好比很多国产浏览器虽然外观不同,但内核其实都是调用了IE。

CPython用>>>作为提示符,而IPython用In [序号]:作为提示符。

PyPy

PyPy是另一个Python解释器,它的目标是执行速度。PyPy采用JIT技术,对Python代码进行动态编译(注意不是解释),所以可以显著提高Python代码的执行速度。

绝大部分Python代码都可以在PyPy下运行,但是PyPy和CPython有一些是不同的,这就导致相同的Python代码在两种解释器下执行可能会有不同的结果。如果你的代码要放到PyPy下执行,就需要了解PyPy和CPython的不同点

Jython

Jython是运行在Java平台上的Python解释器,可以直接把Python代码编译成Java字节码执行。

IronPython

IronPython和Jython类似,只不过IronPython是运行在微软.Net平台上的Python解释器,可以直接把Python代码编译成.Net的字节码。

2. 第一个Python程序

2.1 输出

print()在括号中加上字符串,就可以向屏幕上输出指定的文字。比如输出'hello, world',用代码实现如下:

1
>>> print('hello, world')

print()函数也可以接受多个字符串,用逗号“,”隔开,就可以连成一串输出:

1
2
>>> print('The quick brown fox', 'jumps over', 'the lazy dog')
The quick brown fox jumps over the lazy dog

print()也可以打印整数,或者计算结果:

1
2
3
4
>>> print(300)
300
>>> print(100 + 200)
300

2.2 输入

现在,你已经可以用print()输出你想要的结果了。但是,如果要让用户从电脑输入一些字符怎么办?Python提供了一个input(),可以让用户输入字符串,并存放到一个变量里。比如输入用户的名字:

1
2
>>> name = input()
Michael

当你输入name = input()并按下回车后,Python交互式命令行就在等待你的输入了。这时,你可以输入任意字符,然后按回车后完成输入。

输入完成后,不会有任何提示,Python交互式命令行又回到>>>状态了。那我们刚才输入的内容到哪去了?答案是存放到name变量里了。可以直接输入name查看变量内容:

1
2
>>> name
'Michael'

3. Python基础(重要)

Python的语法比较简单,采用缩进方式,写出来的代码就像下面的样子:

1
2
3
4
5
6
# print absolute value of an integer:
a = 100
if a >= 0:
print(a)
else:
print(-a)

​ 以#开头的语句是注释,注释是给人看的,可以是任意内容,解释器会忽略掉注释。其他每一行都是一个语句,当语句以冒号:结尾时,缩进的语句视为代码块。

​ 缩进有利有弊。好处是强迫你写出格式化的代码,但没有规定缩进是几个空格还是Tab。按照约定俗成的惯例,应该始终坚持使用4个空格的缩进。

​ 缩进的另一个好处是强迫你写出缩进较少的代码,你会倾向于把一段很长的代码拆分成若干函数,从而得到缩进较少的代码。

3.1 数据类型

​ 计算机顾名思义就是可以做数学计算的机器,因此,计算机程序理所当然地可以处理各种数值。但是,计算机能处理的远不止数值,还可以处理文本、图形、音频、视频、网页等各种各样的数据,不同的数据,需要定义不同的数据类型。在Python中,能够直接处理的数据类型有以下几种:

整数

Python可以处理任意大小的整数,当然包括负整数,在程序中的表示方法和数学上的写法一模一样,例如:1100-80800,等等。

计算机由于使用二进制,所以,有时候用十六进制表示整数比较方便,十六进制用0x前缀和0-9,a-f表示,例如:0xff000xa5b4c3d2,等等。

浮点数

浮点数也就是小数,之所以称为浮点数,是因为按照科学记数法表示时,一个浮点数的小数点位置是可变的,比如,1.23x109和12.3x108是完全相等的。浮点数可以用数学写法,如1.233.14-9.01,等等。但是对于很大或很小的浮点数,就必须用科学计数法表示,把10用e替代,1.23x109就是1.23e9,或者12.3e8,0.000012可以写成1.2e-5,等等。

整数和浮点数在计算机内部存储的方式是不同的,整数运算永远是精确的(除法难道也是精确的?是的!),而浮点数运算则可能会有四舍五入的误差。

字符串

字符串是以单引号'或双引号"括起来的任意文本,比如'abc'"xyz"等等。请注意,''""本身只是一种表示方式,不是字符串的一部分,因此,字符串'abc'只有abc这3个字符。如果'本身也是一个字符,那就可以用""括起来,比如"I'm OK"包含的字符是I'm,空格,OK这6个字符。

如果字符串内部既包含'又包含"怎么办?可以用转义字符\来标识,比如:

1
'I\'m \"OK\"!'

表示的字符串内容是:

1
I'm "OK"!

转义字符\可以转义很多字符,比如\n表示换行,\t表示制表符,字符\本身也要转义,所以\\表示的字符就是\,可以在Python的交互式命令行用print()打印字符串看看:

1
2
3
4
5
6
7
8
>>> print('I\'m ok.')
I'm ok.
>>> print('I\'m learning\nPython.')
I'm learning
Python.
>>> print('\\\n\\')
\
\

如果字符串里面有很多字符都需要转义,就需要加很多\,为了简化,Python还允许用r''表示''内部的字符串默认不转义,可以自己试试:

1
2
3
4
>>> print('\\\t\\')
\ \
>>> print(r'\\\t\\')
\\\t\\

如果字符串内部有很多换行,用\n写在一行里不好阅读,为了简化,Python允许用'''...'''的格式表示多行内容,可以自己试试:

1
2
3
4
5
6
>>> print('''line1
... line2
... line3''')
line1
line2
line3

布尔值

布尔值和布尔代数的表示完全一致,一个布尔值只有TrueFalse两种值,要么是True,要么是False,在Python中,可以直接用TrueFalse表示布尔值(请注意大小写),也可以通过布尔运算计算出来:

1
2
3
4
5
6
7
8
>>> True
True
>>> False
False
>>> 3 > 2
True
>>> 3 > 5
False

布尔值可以用andornot运算。

and运算是与运算,只有所有都为Trueand运算结果才是True

1
2
3
4
5
6
7
8
>>> True and True
True
>>> True and False
False
>>> False and False
False
>>> 5 > 3 and 3 > 1
True

or运算是或运算,只要其中有一个为Trueor运算结果就是True

1
2
3
4
5
6
7
8
>>> True or True
True
>>> True or False
True
>>> False or False
False
>>> 5 > 3 or 1 > 3
True

not运算是非运算,它是一个单目运算符,把True变成FalseFalse变成True

1
2
3
4
5
6
>>> not True
False
>>> not False
True
>>> not 1 > 2
True

布尔值经常用在条件判断中,比如:

1
2
3
4
if age >= 18:
print('adult')
else:
print('teenager')

空值

空值是Python里一个特殊的值,用None表示。None不能理解为0,因为0是有意义的,而None是一个特殊的空值。

此外,Python还提供了列表、字典等多种数据类型,还允许创建自定义数据类型,我们后面会继续讲到。

变量

变量的概念基本上和初中代数的方程变量是一致的,只是在计算机程序中,变量不仅可以是数字,还可以是任意数据类型。

变量在程序中就是用一个变量名表示了,变量名必须是大小写英文、数字和_的组合,且不能用数字开头,比如:

1
a = 1

变量a是一个整数。

1
t_007 = 'T007'

变量t_007是一个字符串。

1
Answer = True

变量Answer是一个布尔值True

最后,理解变量在计算机内存中的表示也非常重要。当我们写:

1
a = 'ABC'

时,Python解释器干了两件事情:

  1. 在内存中创建了一个'ABC'的字符串;
  2. 在内存中创建了一个名为a的变量,并把它指向'ABC'

也可以把一个变量a赋值给另一个变量b,这个操作实际上是把变量b指向变量a所指向的数据,例如下面的代码:

1
2
3
4
a = 'ABC'
b = a
a = 'XYZ'
print(b)

​ 最后一行打印出变量b的内容到底是'ABC'呢还是'XYZ'?如果从数学意义上理解,就会错误地得出ba相同,也应该是'XYZ',但实际上b的值是'ABC',让我们一行一行地执行代码,就可以看到到底发生了什么事:

执行a = 'ABC',解释器创建了字符串'ABC'和变量a,并把a指向'ABC'

执行b = a,解释器创建了变量b,并把b指向a指向的字符串'ABC'

执行a = 'XYZ',解释器创建了字符串’XYZ’,并把a的指向改为'XYZ',但b并没有更改:

所以,最后打印变量b的结果自然是'ABC'了。

常量

所谓常量就是不能变的变量,比如常用的数学常数π就是一个常量。在Python中,通常用全部大写的变量名表示常量:

1
PI = 3.14159265359

但事实上PI仍然是一个变量,Python根本没有任何机制保证PI不会被改变,所以,用全部大写的变量名表示常量只是一个习惯上的用法,如果你一定要改变变量PI的值,也没人能拦住你。

最后解释一下整数的除法为什么也是精确的。在Python中,有两种除法,一种除法是/

1
2
>>> 10 / 3
3.3333333333333335

/除法计算结果是浮点数,即使是两个整数恰好整除,结果也是浮点数:

1
2
>>> 9 / 3
3.0

还有一种除法是//,称为地板除,两个整数的除法仍然是整数:

1
2
>>> 10 // 3
3

你没有看错,整数的地板除//永远是整数,即使除不尽。要做精确的除法,使用/就可以。

因为//除法只取结果的整数部分,所以Python还提供一个余数运算,可以得到两个整数相除的余数:

1
2
>>> 10 % 3
1

无论整数做//除法还是取余数,结果永远是整数,所以,整数运算结果永远是精确的。

3.2 字符编码

​ 因为计算机只能处理数字,如果要处理文本,就必须先把文本转换为数字才能处理。最早的计算机在设计时采用8个比特(bit)作为一个字节(byte),所以,一个字节能表示的最大的整数就是255(二进制11111111=十进制255),如果要表示更大的整数,就必须用更多的字节。比如两个字节可以表示的最大整数是65535,4个字节可以表示的最大整数是4294967295

由于计算机是美国人发明的,因此,最早只有127个字符被编码到计算机里,也就是大小写英文字母、数字和一些符号,这个编码表被称为ASCII编码,比如大写字母A的编码是65,小写字母z的编码是122

全世界有上百种语言,日本把日文编到Shift_JIS里,韩国把韩文编到Euc-kr里,各国有各国的标准,就会不可避免地出现冲突,结果就是,在多语言混合的文本中,显示出来会有乱码

​ 因此,Unicode应运而生。Unicode把所有语言都统一到一套编码里,这样就不会再有乱码问题了。

3.3 list 列表

Python内置的一种数据类型是列表:list。list是一种有序的集合,可以随时添加和删除其中的元素。

比如,列出班里所有同学的名字,就可以用一个list表示:

1
2
3
>>> classmates = ['Michael', 'Bob', 'Tracy']
>>> classmates
['Michael', 'Bob', 'Tracy']

变量classmates就是一个list。用len()函数可以获得list元素的个数:

1
2
>>> len(classmates)
3

用索引来访问list中每一个位置的元素,记得索引是从0开始的:

1
2
3
4
5
6
7
8
9
10
>>> classmates[0]
'Michael'
>>> classmates[1]
'Bob'
>>> classmates[2]
'Tracy'
>>> classmates[3]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range

当然,倒数第4个就越界了。

list是一个可变的有序表,所以,可以往list中追加元素到末尾:

1
2
3
>>> classmates.append('Adam')
>>> classmates
['Michael', 'Bob', 'Tracy', 'Adam']

也可以把元素插入到指定的位置,比如索引号为1的位置:

1
2
3
>>> classmates.insert(1, 'Jack')
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy', 'Adam']

要删除list末尾的元素,用pop()方法:

1
2
3
4
>>> classmates.pop()
'Adam'
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy']

要删除指定位置的元素,用pop(i)方法,其中i是索引位置:

1
2
3
4
>>> classmates.pop(1)
'Jack'
>>> classmates
['Michael', 'Bob', 'Tracy']

要把某个元素替换成别的元素,可以直接赋值给对应的索引位置:

1
2
3
>>> classmates[1] = 'Sarah'
>>> classmates
['Michael', 'Sarah', 'Tracy']

list里面的元素的数据类型也可以不同,比如:

1
>>> L = ['Apple', 123, True]

list元素也可以是另一个list,比如:

1
2
3
>>> s = ['python', 'java', ['asp', 'php'], 'scheme']
>>> len(s)
4

3.4 tuple 元组

另一种有序列表叫元组:tuple。tuple和list非常类似,但是tuple一旦初始化就不能修改,比如同样是列出同学的名字:

1
>>> classmates = ('Michael', 'Bob', 'Tracy')

现在,classmates这个tuple不能变了,它也没有append(),insert()这样的方法。其他获取元素的方法和list是一样的,你可以正常地使用classmates[0]classmates[-1],但不能赋值成另外的元素。

不可变的tuple有什么意义?因为tuple不可变,所以代码更安全。如果可能,能用tuple代替list就尽量用tuple。

最后来看一个“可变的”tuple:

1
2
3
4
5
>>> t = ('a', 'b', ['A', 'B'])
>>> t[2][0] = 'X'
>>> t[2][1] = 'Y'
>>> t
('a', 'b', ['X', 'Y'])

这个tuple定义的时候有3个元素,分别是'a''b'和一个list。不是说tuple一旦定义后就不可变了吗?怎么后来又变了?

当我们把list的元素'A''B'修改为'X''Y'后,tuple变为:

表面上看,tuple的元素确实变了,但其实变的不是tuple的元素,而是list的元素。tuple一开始指向的list并没有改成别的list,所以,tuple所谓的“不变”是说,tuple的每个元素,指向永远不变。即指向'a',就不能改成指向'b',指向一个list,就不能改成指向其他对象,但指向的这个list本身是可变的!

3.5 条件判断

计算机之所以能做很多自动化的任务,因为它可以自己做条件判断。

比如,输入用户年龄,根据年龄打印不同的内容,在Python程序中,用if语句实现:

1
2
3
4
age = 20
if age >= 18:
print('your age is', age)
print('adult')

也可以给if添加一个else语句,意思是,如果if判断是False,不要执行if的内容,去把else执行了:

1
2
3
4
5
6
7
age = 3
if age >= 18:
print('your age is', age)
print('adult')
else:
print('your age is', age)
print('teenager')

注意不要少写了冒号:

当然上面的判断是很粗略的,完全可以用elif做更细致的判断:

1
2
3
4
5
6
7
age = 3
if age >= 18:
print('adult')
elif age >= 6:
print('teenager')
else:
print('kid')

elifelse if的缩写,完全可以有多个elif,所以if语句的完整形式就是:

1
2
3
4
5
6
7
8
if <条件判断1>:
<执行1>
elif <条件判断2>:
<执行2>
elif <条件判断3>:
<执行3>
else:
<执行4>

3.6 循环

for 循环

要计算1+2+3,我们可以直接写表达式:

1
2
>>> 1 + 2 + 3
6

要计算1+2+3+…+10,勉强也能写出来。

但是,要计算1+2+3+…+10000,直接写表达式就不可能了。

为了让计算机能计算成千上万次的重复运算,我们就需要循环语句。

Python的循环有两种,一种是for…in循环,依次把list或tuple中的每个元素迭代出来,看例子:

1
2
3
names = ['Michael', 'Bob', 'Tracy']
for name in names:
print(name)

执行这段代码,会依次打印names的每一个元素:

1
2
3
Michael
Bob
Tracy

所以for x in ...循环就是把每个元素代入变量x,然后执行缩进块的语句。

再比如我们想计算1-10的整数之和,可以用一个sum变量做累加:

1
2
3
4
sum = 0
for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
sum = sum + x
print(sum)

计算前100整数的和:

1
2
3
4
sum = 0
for x in range(101):
sum = sum + x
print(sum)

while循环

只要条件满足,就不断循环,条件不满足时退出循环。比如我们要计算100以内所有奇数之和,可以用while循环实现:

1
2
3
4
5
6
sum = 0
n = 99
while n > 0:
sum = sum + n
n = n - 2
print(sum)

break

在循环中,break语句可以提前退出循环。例如,本来要循环打印1~100的数字:

1
2
3
4
5
n = 1
while n <= 100:
print(n)
n = n + 1
print('END')

上面的代码可以打印出1~100。

如果要提前结束循环,可以用break语句:

1
2
3
4
5
6
7
n = 1
while n <= 100:
if n > 10: # 当n = 11时,条件满足,执行break语句
break # break语句会结束当前循环
print(n)
n = n + 1
print('END')

执行上面的代码可以看到,打印出1~10后,紧接着打印END,程序结束。

可见break的作用是提前结束循环。

continue

在循环过程中,也可以通过continue语句,跳过当前的这次循环,直接开始下一次循环。

1
2
3
4
n = 0
while n < 10:
n = n + 1
print(n)

上面的程序可以打印出1~10。但是,如果我们想只打印奇数,可以用continue语句跳过某些循环:

1
2
3
4
5
6
n = 0
while n < 10:
n = n + 1
if n % 2 == 0: # 如果n是偶数,执行continue语句
continue # continue语句会直接继续下一轮循环,后续的print()语句不会执行
print(n)

执行上面的代码可以看到,打印的不再是1~10,而是1,3,5,7,9。

可见continue的作用是提前结束本轮循环,并直接开始下一轮循环。

3.7 dict 字典

Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。

举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list:

1
2
names = ['Michael', 'Bob', 'Tracy']
scores = [95, 75, 85]

给定一个名字,要查找对应的成绩,就先要在names中找到对应的位置,再从scores取出对应的成绩,list越长,耗时越长。

如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:

1
2
3
>>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
>>> d['Michael']
95

​ 为什么dict查找速度这么快?因为dict的实现原理和查字典是一样的。假设字典包含了1万个汉字,我们要查某一个字,一个办法是把字典从第一页往后翻,直到找到我们想要的字为止,这种方法就是在list中查找元素的方法,list越大,查找越慢。

​ 第二种方法是先在字典的索引表里(比如部首表)查这个字对应的页码,然后直接翻到该页,找到这个字。无论找哪个字,这种查找速度都非常快,不会随着字典大小的增加而变慢。

​ dict就是第二种实现方式,给定一个名字,比如'Michael',dict在内部就可以直接计算出Michael对应的存放成绩的“页码”,也就是95这个数字存放的内存地址,直接取出来,所以速度非常快。

​ 把数据放入dict的方法,除了初始化时指定外,还可以通过key放入:

1
2
3
>>> d['Adam'] = 67
>>> d['Adam']
67

由于一个key只能对应一个value,所以,多次对一个key放入value,后面的值会把前面的值冲掉:

1
2
3
4
5
6
>>> d['Jack'] = 90
>>> d['Jack']
90
>>> d['Jack'] = 88
>>> d['Jack']
88

​ 如果key不存在,dict就会报错:

1
2
3
4
>>> d['Thomas']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'Thomas'

要避免key不存在的错误,有两种办法,一是通过in判断key是否存在:

1
2
>>> 'Thomas' in d
False

二是通过dict提供的get()方法,如果key不存在,可以返回None,或者自己指定的value:

1
2
3
>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1

​ 要删除一个key,用pop(key)方法,对应的value也会从dict中删除:

1
2
3
4
>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}

请务必注意,dict内部存放的顺序和key放入的顺序是没有关系的。

和list比较,dict有以下几个特点:

  1. 查找和插入的速度极快,不会随着key的增加而变慢;
  2. 需要占用大量的内存,内存浪费多。

而list相反:

  1. 查找和插入的时间随着元素的增加而增加;
  2. 占用空间小,浪费内存很少。

所以,dict是用空间来换取时间的一种方法。

​ dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是不可变对象

​ 这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)。

​ 要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key:

1
2
3
4
5
>>> key = [1, 2, 3]
>>> d[key] = 'a list'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

3.8 set 集合

​ set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。

要创建一个set,需要提供一个list作为输入集合:

1
2
3
>>> s = set([1, 2, 3])
>>> s
{1, 2, 3}

注意,传入的参数[1, 2, 3]是一个list。

重复元素在set中自动被过滤:

1
2
3
>>> s = set([1, 1, 2, 2, 3, 3])
>>> s
{1, 2, 3}

通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果:

1
2
3
4
5
6
>>> s.add(4)
>>> s
{1, 2, 3, 4}
>>> s.add(4)
>>> s
{1, 2, 3, 4}

通过remove(key)方法可以删除元素:

1
2
3
>>> s.remove(4)
>>> s
{1, 2, 3}

set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:

1
2
3
4
5
6
>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
{2, 3}
>>> s1 | s2
{1, 2, 3, 4}
set 和 dict唯一的区别仅在于没有存储对应的value,但是,set和dict的原理十一昂的,所以,同样不可以放入可变的对象,因为无法判断两个可变对象是否相等,**也就无法保证set内部 不会有重复的元素。**
1
2
3
4
5
6
>>> s1 = set([1,2,3,[1,2,3]])
Traceback (most recent call last):
File "<pyshell#10>", line 1, in <module>
s1 = set([1,2,3,[1,2,3]])
TypeError: unhashable type: 'list'
>>>
打赏
  • 版权声明: 本博客所有文章除特别声明外,均采用 Apache License 2.0 许可协议。转载请注明出处!
  • © 2019-2022 Zhuuu
  • PV: UV:

请我喝杯咖啡吧~

支付宝
微信