Redis-12-缓存穿透和雪崩

Redis-12-缓存穿透和雪崩和击穿

以下都是服务器的高可用问题

参考博客:https://blog.csdn.net/haoxin963/article/details/83245113

https://blog.csdn.net/zeb_perfect/article/details/54135506

面试高频,工作常用

  • 大多数公司目前的数据库查询结构

mark

1. 缓存穿透(查不到)

1.1 概念

  • 业务系统要查询的数据根本就不存在!当业务系统发起查询时,按照上述流程,首先会前往缓存中查询,由于缓存中不存在,然后再前往数据库中查询。由于该数据压根就不存在,因此数据库也返回空。这就是缓存穿透。

  • 综上所述:业务系统访问压根就不存在的数据,就称为缓存穿透。

1.2 危害

  • 如果存在海量请求查询压根就不存在的数据,那么这些海量请求都会落到数据库中,数据库压力剧增,可能会导致系统崩溃(你要知道,目前业务系统中最脆弱的就是IO,稍微来点压力它就会崩溃,所以我们要想种种办法保护它)。

1.3 原因

发生缓存穿透的原因有很多,一般为如下两种:

  • 恶意攻击,故意营造大量不存在的数据请求我们的服务,由于缓存中并不存在这些数据,因此海量请求均落在数据库中,从而可能会导致数据库崩溃。
  • 代码逻辑错误。这是程序员的锅,没啥好讲的,开发中一定要避免!

1.4 解决方案

  • 这两种方案都能解决缓存穿透的问题,但使用场景却各不相同。
  1. 布隆过滤器(BloomFilter)

mark

  • 它需要在缓存之前再加一道屏障,里面存储目前数据库中存在的所有key,如上图所示

  • 当业务系统有查询请求的时候,首先去BloomFilter中查询该key是否存在。若不存在,则说明数据库中也不存在该数据,因此缓存都不要查了,直接返回null。若存在,则继续执行后续的流程,先前往缓存中查询,缓存中没有的话再前往数据库中的查询。

  1. 缓存空对象
  • 之所以发生缓存穿透,是因为缓存中没有存储这些空数据的key,导致这些请求全都打到数据库上。
  • 那么,我们可以稍微修改一下业务系统的代码,将数据库查询结果为空的key也存储在缓存中。当后续又出现该key的查询请求时,缓存直接返回null,而无需查询数据库。
  • 当存储层不命中后,即使返回的空对象也将其缓存起来,同时会设置一个过期时间,之后再访问这个数据将会从缓存中获取,保护了后端数据源;

mark

但是这种方法会存在两个问题:

  1. 第一,空值做了缓存,意味着缓存层中存了更多的键,需要更多的内存空间 ( 如果是攻击,问题更严重 ),比较有效的方法是针对这类数据设置一个较短的过期时间,让其自动剔除。
  2. 第二,缓存层和存储层的数据会有一段时间窗口的不一致,可能会对业务有一定影响。例如过期时间设置为 5 分钟,如果此时存储层添加了这个数据,那此段时间就会出现缓存层和存储层数据的不一致,此时可以利用消息系统或者其他方式清除掉缓存层中的空对象。

1.5 两种方案的比较

  • 这两种方案都能解决缓存穿透的问题,但使用场景却各不相同。
  • 对于一些恶意攻击,查询的key往往各不相同,而且数据贼多。(此时使用布隆过滤器比较合适)。(因为它需要存储所有空数据的key,而这些恶意攻击的key往往各不相同,而且同一个key往往只请求一次。因此即使缓存了这些空数据的key,由于不再使用第二次,因此也起不了保护数据库的作用。)
  • key 重复率较高的话,选择缓存空数据比较合适。

2. 缓存击穿(热点数据集中失效)

2.1 概念

  • 我们一般都会给缓存设定一个失效时间,过了失效时间后,该数据库会被缓存直接删除,从而一定程度上保证数据的实时性。
  • 但是,对于一些请求量极高的热点数据而言,一旦过了有效时间,此刻将会有大量请求落在数据库上,从而可能会导致数据库崩溃。其过程如下图所示:

mark

2.2 解决方案

解决方案1:

  • 让缓存永不过期。即便某些商品自己发酵成了爆款,也是直接设为永不过期就好了。

“永远不过期”包含两层意思:
从缓存层面来看,确实没有设置过期时间,所以不会出现热点 key 过期后产生的问题,也就是“物理”不过期。
从功能层面来看,为每个 value 设置一个逻辑过期时间,当发现超过逻辑过期时间后,会使用单独的线程去构建缓存

mark

从实战看,此方法有效杜绝了热点 key 产生的问题,但唯一不足的就是重构缓存期间,会出现数据不一致的情况,这取决于应用方是否容忍这种不一致。

解决方案2:

  • 互斥锁

此方法只允许一个线程重建缓存,其他线程等待重建缓存的线程执行完,重新从缓存获取数据即可,整个过程如图 :

mark

当第一个数据库查询请求发起后,就将缓存中该数据上锁;此时到达缓存的其他查询请求将无法查询该字段,从而被阻塞等待;当第一个请求完成数据库查询,并将数据更新值缓存后,释放锁;此时其他被阻塞的查询请求将可以直接从缓存中查到该数据。

互斥锁可以避免某一个热点数据失效导致数据库崩溃的问题,而在实际业务中,往往会存在一批热点数据同时失效的场景。那么,对于这种场景该如何防止数据库过载呢?

设置不同的失效时间

当我们向缓存中存储这些数据的时候,可以将他们的缓存失效时间错开。这样能够避免同时失效。如:在一个基础时间上加/减一个随机数,从而将这些缓存的失效时间错开

3. 缓存雪崩(缓存消失)

3.1 简介

  • 如果缓存因某种原因发生了宕机,那么原本被缓存抵挡的海量查询请求就会像疯狗一样涌向数据库。此时数据库如果抵挡不了这巨大的压力,它就会崩溃。
  • 这就是缓存雪崩。

mark

3.2 解决方案

(1)redis高可用

这个思想的含义是,既然redis有可能挂掉,那我多增设几台redis,这样一台挂掉之后其他的还可以继续工作,其实就是搭建的集群。(异地多活)

(2)限流降级

这个解决方案的思想是,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。

这里可以使用Hystrix:

  • Hystrix是一款开源的“防雪崩工具”,它通过 熔断、降级、限流三个手段来降低雪崩发生后的损失。
  • Hystrix就是一个Java类库,它采用命令模式,每一项服务处理请求都有各自的处理器。所有的请求都要经过各自的处理器。处理器会记录当前服务的请求失败率。一旦发现当前服务的请求失败率达到预设的值,Hystrix将会拒绝随后该服务的所有请求,直接返回一个预设的结果。这就是所谓的“熔断”
  • 当经过一段时间后,Hystrix会放行该服务的一部分请求,再次统计它的请求失败率。如果此时请求失败率符合预设值,则完全打开限流开关;如果请求失败率仍然很高,那么继续拒绝该服务的所有请求。这就是所谓的“限流”
  • 而Hystrix向那些被拒绝的请求直接返回一个预设结果,被称为“降级”
打赏
  • 版权声明: 本博客所有文章除特别声明外,均采用 Apache License 2.0 许可协议。转载请注明出处!
  • © 2019-2022 Zhuuu
  • PV: UV:

请我喝杯咖啡吧~

支付宝
微信