排序-03-快速排序

排序-03-快速排序

1. 思想

  • 快速排序,说白了就是给基准数据找其正确索引位置的过程.

举个栗子:

  • 如下图所示,假设最开始的基准数据为数组第一个元素23,则首先用一个临时变量去存储基准数据,即tmp=23;然后分别从数组的两端扫描数组,设两个指示标志:low指向起始位置,high指向末尾.

mark

  • 首先从后半部分开始,如果扫描到的值大于基准数据就让high减1,如果发现有元素比该基准数据的值小(如上图中18<=tmp),就将high位置的值赋值给low位置 ,结果如下:

mark

  • 然后开始从前往后扫描,如果扫描到的值小于基准数据就让low加1,如果发现有元素大于基准数据的值(如上图46=>tmp),就再将low位置的值赋值给high位置的值,指针移动并且数据交换后的结果如下:

mark

  • 然后再开始从后向前扫描,原理同上,发现上图11<=tmp,则将high位置的值赋值给low位置的值,结果如下:

mark

  • 这样一遍走下来,可以很清楚的知道,其实快速排序的本质就是把基准数大的都放在基准数的右边,把比基准数小的放在基准数的左边,这样就找到了该数据在数组中的正确位置.
  • 以后采用递归的方式分别对前半部分和后半部分排序,当前半部分和后半部分均有序时该数组就自然有序了。

2. 结论

从上面的过程中可以看到:

  ①先从队尾开始向前扫描且当low < high时,如果a[high] > tmphigh–,但如果a[high] < tmp,则将high的值赋值给low,即arr[low] = a[high],同时要转换数组扫描的方式,即需要从队首开始向队尾进行扫描了
  ②同理,当从队首开始向队尾进行扫描时,如果a[low] < tmp,则low++,但如果a[low] > tmp了,则就需要将low位置的值赋值给high位置,即arr[low] = arr[high],同时将数组扫描方式换为由队尾向队首进行扫描.

​ ③不断重复①和②,知道low>=high时(其实是low=high),lowhigh的位置就是该基准数据在数组中的正确索引位置.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
public class QuickSort {
public static void main(String[] args) {
int[] arr = { 49, 38, 65, 97, 23, 22, 76, 1, 5, 8, 2, 0, -1, 22 };
quickSort(arr, 0, arr.length - 1);
System.out.println("排序后:");
for (int num : arr) {
System.out.println(num);
}
}

private static void quickSort(int[] arr, int low, int high) {

if (low < high) {
// 找寻基准数据的正确索引
int index = getIndex(arr, low, high);

// 进行迭代对index之前和之后的数组进行相同的操作使整个数组变成有序
quickSort(arr, low, index - 1);
quickSort(arr, index + 1, high);
}

}

private static int getIndex(int[] arr, int low, int high) {
// 基准数据
int tmp = arr[low];
while (low < high) {
// 当队尾的元素大于等于基准数据时,向前挪动high指针
while (low < high && arr[high] >= tmp) {
high--;
}
// 如果队尾元素小于tmp了,需要将其赋值给low
arr[low] = arr[high];
// 当队首元素小于等于tmp时,向前挪动low指针
while (low < high && arr[low] <= tmp) {
low++;
}
// 当队首元素大于tmp时,需要将其赋值给high
arr[high] = arr[low];

}
// 跳出循环时low和high相等,此时的low或high就是tmp的正确索引位置
// 由原理部分可以很清楚的知道low位置的值并不是tmp,所以需要将tmp赋值给arr[low]
arr[low] = tmp;
return low; // 返回tmp的正确位置
}
}

3. 优化

参考博客 : https://blog.csdn.net/qq_19525389/article/details/81436838

1、快速排序的基本思想:

  • 快速排序使用分治的思想,通过一趟排序将待排序列分割成两部分,其中一部分记录的关键字均比另一部分记录的关键字小。
  • 之后分别对这两部分记录继续进行排序,递归地以达到整个序列有序的目的。

2、快速排序的三个步骤:

(1)选择基准:在待排序列中,按照某种方式挑出一个元素,作为 “基准”(pivot)

(2)分割操作:以该基准在序列中的实际位置,把序列分成两个子序列。此时,在基准左边的元素都比该基准小,在基准右边的元素都比基准大

(3)递归地对两个序列进行快速排序,直到序列为空或者只有一个元素。

优化一 : 选择基准的方式

  • 对于分治算法,当每次划分时,算法若都能分成两个等长的子序列时,那么分治算法效率会达到最大。也就是说,基准的选择是很重要的。选择基准的方式决定了两个分割后两个子序列的长度,进而对整个算法的效率产生决定性影响。

  • 最理想的方法是,选择的基准恰好能把待排序序列分成两个等长的子序列

我们介绍三种选择基准的方法

  1. 思想:取序列的第一个或最后一个元素作为基准

基本的快速排序

1
2
3
4
int SelectPivot(int arr[],int low,int high)
{
return arr[low];//选择选取序列的第一个元素作为基准
}

注意:基本的快速排序选取第一个或最后一个元素作为基准。但不是一种好方法

mark

测试数据分析:如果输入序列是随机的,处理时间可以接受的。如果数组已经有序时,此时的分割就是一个非常不好的分割。因为每次划分只能使待排序序列减一,此时为最坏情况,快速排序沦为起泡排序,时间复杂度为Θ(n^2)。而且,输入的数据是有序或部分有序的情况是相当常见的。因此,使用第一个元素作为枢纽元是非常糟糕的,为了避免这个情况,就引入了下面两个获取基准的方法。

方法(2):随机选取基准

引入的原因:在待排序列是部分有序时,固定选取枢轴使快排效率底下,要缓解这种情况,就引入了随机选取枢轴

思想:取待排序列中任意一个元素作为基准

1
2
3
4
5
6
7
8
9
10
 
/*随机选择枢轴的位置,区间在low和high之间*/
int SelectPivotRandom(int arr[],int low,int high)
{
srand((unsigned)time(NULL));//产生枢轴的位置
int pivotPos = rand()%(high - low) + low;

swap(arr[pivotPos],arr[low]);//把枢轴位置的元素和low位置元素互换,此时可以和普通的快排一样调用划分函数
return arr[low];
}

mark

方法三: 三数取中

  • 引入的原因:虽然随机选取枢轴时,减少出现不好分割的几率,但是还是最坏情况下还是O(n^2),要缓解这种情况,就引入了三数取中选取枢轴
  • 具体思想:对待排序序列中low、mid、high三个位置上数据进行排序,取他们中间的那个数据作为枢轴,并用0下标元素存储枢轴。
1
2
3
4
5
举例:待排序序列为:8 1 4 9 6 3 5 2 7 0

左边为:8,右边为0,中间为6.

我们这里取三个数排序后,中间那个数作为枢轴,则枢轴为6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*函数作用:取待排序序列中low、mid、high三个位置上数据,选取他们中间的那个数据作为枢轴*/
int SelectPivotMedianOfThree(int arr[],int low,int high)
{
int mid = low + ((high - low) >> 1);//计算数组中间的元素的下标
//使用三数取中法选择枢轴

if (arr[mid] > arr[high])//目标: arr[mid] <= arr[high]
{
swap(arr[mid],arr[high]);
}

if (arr[low] > arr[high])//目标: arr[low] <= arr[high]
{
swap(arr[low],arr[high]);
}

if (arr[mid] > arr[low]) //目标: arr[low] >= arr[mid]
{
swap(arr[mid],arr[low]);
}

//此时,arr[mid] <= arr[low] <= arr[high]
return arr[low];
//low的位置上保存这三个位置中间的值
//分割时可以直接使用low位置的元素作为枢轴,而不用改变分割函数了
}

mark

优化二:当待排序序列长度分割到一定大小后,使用插入排序

1
2
3
原因:对于很小和部分有序的数组,快排不如插排好。当待排序序列的长度分割到一定大小后,继续分割的效率比插入排序要差,此时可以使用插排而不是快排

截止范围:待排序序列长度N = 10,虽然在5~20之间任一截止范围都有可能产生类似的结果,这种做法也避免了一些有害的退化情形。摘自《数据结构与算法分析》Mark Allen Weiness 著
1
2
3
4
5
if (high - low + 1 < 10)
{
InsertSort(arr,low,high);
return;
}//else时,正常执行快排

测试数据:

mark

1
2
3
测试数据分析:针对随机数组,使用三数取中选择枢轴+插排,效率还是可以提高一点,
但是针对已排序的数组,是没有任何用处的。因为待排序序列是已经有序的,那么每次划分只能使待排序序列减一。
此时,插排是发挥不了作用的。所以这里看不到时间的减少。另外,三数取中选择枢轴+插排还是不能处理重复数组

优化三:在一次分割结束后,可以把key相等的元素聚集在一起,不用在对key相等的元素分割

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
举例:

待排序序列 1 4 6 7 6 6 7 6 8 6

三数取中选取枢轴:下标为4的数6

转换后,待分割序列:6 4 6 7 1 6 7 6 8 6

枢轴key:6

本次划分后,未对与key元素相等处理的结果:1 4 6 6 7 6 7 6 8 6

下次的两个子序列为:1 4 67 6 7 6 8 6

本次划分后,对与key元素相等处理的结果:1 4 6 6 6 6 6 7 8 7

下次的两个子序列为:1 47 8 7

经过对比,我们可以看出,在一次划分后,把与key相等的元素聚在一起,能减少迭代次数,效率会提高不少

具体过程:在处理过程中,会有两个步骤

第一步,在划分过程中,把与key相等元素放入数组的两端

第二步,划分结束后,把与key相等的元素移到枢轴周围

举例:

待排序序列 1 4 6 7 6 6 7 6 8 6

三数取中选取枢轴:下标为4的数6

转换后,待分割序列:6 4 6 7 1 6 7 6 8 6

枢轴key:6

第一步,在划分过程中,把与key相等元素放入数组的两端

结果为:6 4 1 6(枢轴) 7 8 7 6 6 6

此时,与6相等的元素全放入在两端了

第二步,划分结束后,把与key相等的元素移到枢轴周围

结果为:1 4 66(枢轴) 6 6 6 7 8 7

此时,与6相等的元素全移到枢轴周围了

之后,在1 47 8 7两个子序列进行快排
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
void gather(int arr[], int low, int high, int boundKey, int *left, int *right)
{
if (low < high)
{
int count = boundKey - 1;
for (int i = boundKey - 1; i >= low; --i)
{
if (arr[i] == arr[boundKey])
{
swap(arr, i, count);
count--;
}
}
*left = count;
count = boundKey + 1;
for (int i = boundKey + 1; i <= high; ++i)
{
if (arr[i] == arr[boundKey])
{
swap(arr, i, count);
count++;
}
}
*right = count;
}
}

原因:在数组中,如果有相等的元素,那么就可以减少不少冗余的划分。这点在重复数组中体现特别明显啊。

其实这里,插排的作用还是不怎么大的。

打赏
  • 版权声明: 本博客所有文章除特别声明外,均采用 Apache License 2.0 许可协议。转载请注明出处!
  • © 2019-2022 Zhuuu
  • PV: UV:

请我喝杯咖啡吧~

支付宝
微信