Leetcode-146-LRU缓存机制

Leecode-146. LRU缓存机制

思路:递归/迭代

题目描述

运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。

  • 获取数据 get(key) - 如果关键字 (key) 存在于缓存中,则获取关键字的值(总是正数),否则返回 -1。
  • 写入数据 put(key, value) - 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字/值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。

方案: 哈希链表

  • LRU 算法实际上是让你设计数据结构:首先要接收一个 capacity 参数作为缓存的最大容量,然后实现两个 API,一个是 put(key, val) 方法存入键值对,另一个是 get(key) 方法获取 key 对应的 val,如果 key 不存在则返回 -1。
  • 注意哦,get 和 put 方法必须都是 O(1) 的时间复杂度,我们举个具体例子来看看 LRU 算法怎么工作。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/* 缓存容量为 2 */
LRUCache cache = new LRUCache(2);
// 你可以把 cache 理解成一个队列
// 假设左边是队头,右边是队尾
// 最近使用的排在队头,久未使用的排在队尾
// 圆括号表示键值对 (key, val)

cache.put(1, 1);
// cache = [(1, 1)]
cache.put(2, 2);
// cache = [(2, 2), (1, 1)]
cache.get(1); // 返回 1
// cache = [(1, 1), (2, 2)]
// 解释:因为最近访问了键 1,所以提前至队头
// 返回键 1 对应的值 1
cache.put(3, 3);
// cache = [(3, 3), (1, 1)]
// 解释:缓存容量已满,需要删除内容空出位置
// 优先删除久未使用的数据,也就是队尾的数据
// 然后把新的数据插入队头
cache.get(2); // 返回 -1 (未找到)
// cache = [(3, 3), (1, 1)]
// 解释:cache 中不存在键为 2 的数据
cache.put(1, 4);
// cache = [(1, 4), (3, 3)]
// 解释:键 1 已存在,把原始值 1 覆盖为 4
// 不要忘了也要将键值对提前到队头
  • 分析上面的操作过程,要让 put 和 get 方法的时间复杂度为 O(1),我们可以总结出 cache 这个数据结构必要的条件:查找快,插入快,删除快,有顺序之分。
  • 因为显然 cache 必须有顺序之分,以区分最近使用的和久未使用的数据;而且我们要在 cache 中查找键是否已存在;如果容量满了要删除最后一个数据;每次访问还要把数据插入到队头。
  • 那么,什么数据结构同时符合上述条件呢?哈希表查找快,但是数据无固定顺序链表有顺序之分,插入删除快,但是查找慢。所以结合一下,形成一种新的数据结构:哈希链表。
  • LRU 缓存算法的核心数据结构就是哈希链表,双向链表和哈希表的结合体。这个数据结构长这样:

mark

思想很简单,就是借助哈希表赋予了链表快速查找的特性嘛:可以快速查找某个 key 是否存在缓存(链表)中,同时可以快速删除、添加节点。回想刚才的例子,这种数据结构是不是完美解决了 LRU 缓存的需求?

也许读者会问,为什么要是双向链表,单链表行不行?另外,既然哈希表中已经存了 key,为什么链表中还要存键值对呢,只存值不就行了?

想的时候都是问题,只有做的时候才有答案。这样设计的原因,必须等我们亲自实现 LRU 算法之后才能理解,所以我们开始看代码吧~

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class LRUCache extends LinkedHashMap<Integer, Integer>{
private int capacity;

public LRUCache(int capacity) {
super(capacity, 0.75F, true);
this.capacity = capacity;
}

public int get(int key) {
return super.getOrDefault(key, -1);
}

// 这个可不写
public void put(int key, int value) {
super.put(key, value);
}

@Override
protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
return size() > capacity;
}
}

手动实现版本

  1. Node结构
1
2
3
4
5
6
7
8
class Node {
public int key, val;
public Node next, prev;
public Node(int k, int v) {
this.key = k;
this.val = v;
}
}
  1. 双向链表
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
class DoubleList {
private Node head, tail; // 头尾虚节点
private int size; // 链表元素数

public DoubleList() {
head = new Node(0, 0);
tail = new Node(0, 0);
head.next = tail;
tail.prev = head;
size = 0;
}

// 在链表头部添加节点 x
public void addFirst(Node x) {
x.next = head.next;
x.prev = head;
head.next.prev = x;
head.next = x;
size++;
}

// 删除链表中的 x 节点(x 一定存在)
public void remove(Node x) {
x.prev.next = x.next;
x.next.prev = x.prev;
size--;
}

// 删除链表中最后一个节点,并返回该节点
public Node removeLast() {
if (tail.prev == head)
return null;
Node last = tail.prev;
remove(last);
return last;
}

// 返回链表长度
public int size() { return size; }
}
  1. 缓存实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import java.util.HashMap;


class LRUCache {

// key -> Node(key, val)
private HashMap<Integer,Node> map;
// Node(k1, v1) <-> Node(k2, v2)...
private DoubleList cache;
// 最大容量
private int cap;


public LRUCache(int capacity) {
this.cap = capacity;
map = new HashMap<>();
cache = new DoubleList();
}

public int get(int key) {
// 如果不存在
if (!map.containsKey(key)){
return -1;
}

int val = map.get(key).val;
// 利用 put 方法把该数据提前
put(key,val);
return val;
}

public void put(int key, int value) {
// 先把新节点 x new出来
Node x = new Node(key,value);

// 如果之前key存在
if (map.containsKey(key)){
// 删除旧的节点,新的插入到头部
cache.remove(map.get(key));
cache.addFirst(x);

// 更新map对应的数据
map.put(key,x);
}else {
// 如果之前key不存在
if (cap == cache.size()){
// 删除链表的最后一个数据
Node last = cache.removeLast();
map.remove(last.key);
}
// 直接添加到头部
cache.addFirst(x);
map.put(key,x);
}
}


public static void main(String[] args) {
LRUCache cache = new LRUCache(2);
cache.put(1, 1);
cache.put(2, 2);
System.out.println(cache.map.keySet());

int res1 = cache.get(1);
System.out.println(res1);

cache.put(3, 3);

int res2 = cache.get(2);
System.out.println(res2);

int res3 = cache.get(3);
System.out.println(res3);

cache.put(4, 4);
System.out.println(cache.map.keySet());

int res4 = cache.get(1);
System.out.println(res4);

int res5 = cache.get(3);
System.out.println(res5);

int res6 = cache.get(4);
System.out.println(res6);

}
}

补充一段伪代码逻辑

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// key 映射到 Node(key, val)
HashMap<Integer, Node> map;
// Node(k1, v1) <-> Node(k2, v2)...
DoubleList cache;

int get(int key) {
if (key 不存在) {
return -1;
} else {
将数据 (key, val) 提到开头;
return val;
}
}

void put(int key, int val) {
Node x = new Node(key, val);
if (key 已存在) {
把旧的数据删除;
将新节点 x 插入到开头;
} else {
if (cache 已满) {
删除链表的最后一个数据腾位置;
删除 map 中映射到该数据的键;
}
将新节点 x 插入到开头;
map 中新建 key 对新节点 x 的映射;
}
}
打赏
  • 版权声明: 本博客所有文章除特别声明外,均采用 Apache License 2.0 许可协议。转载请注明出处!
  • © 2019-2022 Zhuuu
  • PV: UV:

请我喝杯咖啡吧~

支付宝
微信